November 25, 2016

makalah t test dependent


Judul: makalah t test dependent
Penulis: Ina Sholihah


MAKALAH STATISTIK LANJUT
T-TEST DEPENDENT

Makalah ini Disusun untuk Memenuhi Tugas Mata Kuliah Statistika Lanjut dengan Dosen Pengampu Dr. Mutalazimah, SKM, Mkes
Disusun Oleh :
Kelompok 4
Novia Putri P( J310100078)
Ina Sholihah(J310120005)
Katria Ravita E( J310120018)
Fiqi Dwi Kartika( J310120023)
Rusmah Suci A( J310120024)
Rieny Hutami E(J310120036)
PROGRAM STUDI ILMU GIZI SI
FAKULTAS ILMU KESEHATAN
UNIVERSITAS MUHAMMADIYAH SURAKARTA
2014
BAB I
PENDAHULUAN
Latar Belakang
Dalam uji statistik parametrik terdapat beberapa uji yang dapat digunakan untuk mengambil kesimpulan tentang populasi dari sampel tersebut yang diambil. Seandainya sampel yang diambil merupakan sampel yang saling berhubungan, maka akan timbul suatu permasalahan bagaimana cara (metode) menganalisisnya dan uji statistik apa yang digunakan. Salah satu uji statistik parametrik digunakan adalah uji T-test dependent.
T - test atau uji t adalah uji statistik yang digunakan untuk menguji kebenaran atau kepalsuan hipotesis nol. Uji t pertama kali dikembangkan oleh William Seely Gosset pada tahun 1915. Uji t dapat dibagi menjadi 2 , yaitu uji t yang digunakan untuk pengujian hipotesis 1 sampel dan uji t yang digunakan untuk pengujian hipotesis 2 sempel. Bila duhubungkan dengan kebebasan (independency) sampel yang digunakan (khusus bagi uji t dengan 2 sampel), maka uji t dibagi lagi menjadi 2, yaitu uji t untuk sampel bebas (independent) dan uji t untuk sampel berpasangan (paired).
Uji t - test dependent adalah pengujian yang mana tidak adanya perbedaan yang signifikan antara nilai variabel dari dua sampel yang berpasangan atau berkolerasi.Fungsi dari t-test dependent adalah untuk membandingkan rata-rata dua grup yang saling berpasangan. Sampel berpasangan dapat diartikan sebagai sebuah sampel dengan subjek yang sama namun mengalami 2 perlakuan atau pengukuran yang berbeda, yaitu pengukuran sebelum dan sesudah dilakukan sebuah perlakuan. Syarat jenis uji t – test dependent adalah: (a) data berdistribusi normal; (b) kedua kelompok data adalah dependen (saling berhubungan/berpasangan); dan (c) jenis data yang digunakan adalah numeric dan kategorik (dua kelompok).
Rumusan Masalah
Apakah uji t – test dependent?
Apakah fungsi dari penggunaan t – test dependent ?
Bagaimana syarat – syarat penggunaan uji t – test dependent?
Bagaimana konsep hipotesis dalam statistika?
Bagaimana langkah – langkah penggunaan uji t – test dependent?
Tujuan
Tujuan dari penulisan makalah ini adalah untuk :
Mendiskusikan dan membahas pengertian uji t – test dependent.
Mendiskusikan dan membahas fungsi dari penggunaan uji t – test dependent.
Mendiskusikan dan membahas syarat – syarat penggunaan uji t – test dependent.
Mendiskusikan dan membahas konsep hipotesis dalam statistika.
Mendiskusikan dan membahas langkah – langkah penggunaan uji t – test dependent.
Manfaat
Penulisan makalah ini diharapkan mampu memberikan manfaat yang signifikan bagi pembacanya dalam memahami dan mengimplementasikan konsep hipotesis dalam perhitungan statistika yang berguna dalam melakukan penelitian.
BAB II
PEMBAHASAN
Sejarah dari Uji T – Test Dependent
Tes t atau uji t adalah uji statistik yang digunakan untuk menguji kebenaran atau kepalsuan hipotesis nol. Uji t pertama kali dikembangkan oleh William Seely Gosset pada tahun 1915. Awalnya William Seely Gosset menggunakan nama samaran Student, dan huruf t yang terdapat dalam istilah uji "t" dari huruf terakhir nama beliau. Uji t disebut juga dengan nama student t.( Ridwan, 2006)
Uji t (t – test) merupakan statistik uji yang sering kali ditemui dalam masalah – masalah praktis statistika. Uji t merupakan dalam golongan statistika parametrik. Statistik uji ini digunakan dalam pengujian hipotesis, uji t digunakan ketika informasi mengenai nilai variance (ragam) populasi tidak diketahui. Uji t adalah salah satu uji yang digunakan untuk mengetahui ada atau tidaknya perbedaan yang signifikan (menyakinkan) dari dua mean sampel (dua buah variabel yang dikomparasikan). Uji t dapat dibagi menjadi 2 , yaitu uji t yang digunakan untuk pengujian hipotesis 1 sampel dan uji t yang digunakan untuk pengujian hipotesis 2 sempel. Bila duhubungkan dengan kebebasan (independency) sampel yang digunakan (khusus bagi uji t dengan 2 sampel), maka uji t dibagi lagi menjadi 2, yaitu uji t untuk sampel bebas (independent) dan uji t untuk sampel berpasangan (paired).( Ridwan, 2006)

Pengertian dari Uji T-Test Dependent
T-test dependent atau sering diistilakan dengan Paired Sampel t-Test, adalah jenis uji statistika yang bertujuan untuk membandingkan rata-rata dua grup yang saling berpasangan. Sampel berpasangan dapat diartikan sebagai sebuah sampel dengan subjek yang sama namun mengalami 2 perlakuan atau pengukuran yang berbeda, yaitu pengukuran sebelum dan sesudah dilakukan sebuah treatment.(Sugiyono, 2010)
Menurut Prof. Dr. Sugiyono (2009), definisi dari t test dependent adalah pengujian yang mana tidak adanya perbedaan yang signifikan antara nilai variabel dari dua sampel yang berpasangan atau berkolerasi. Sampel berpasangan dapat berupa :
Satu sampel yang diukur dua kali misalnya sebelum sampel diberi iklan dan sesudah diberi iklan. Yang diukur selanjutnya adalah apakah setelah diberi iklan anggota sampel yang membeli barang lebih banyak daripada anggota sampel sebelum diberi iklan atau tidak.
Dua sampel berpasangan diukur bersama, misalnya sampel yang satu diberi iklan, sampel yang lain tidak. Yang diukur selanjutnya adalah apakah anggota sampel yang diberi iklan memberi barang lebih banyak atau tidak dari pada yang tidak diberi iklan.
Fungsi dari Uji T-test dependent
Fungsi dari t-test dependent adalah untuk membandingkan rata-rata dua grup yang saling berpasangan. Sampel berpasangan dapat diartikan sebagai sebuah sampel dengan subjek yang sama namun mengalami 2 perlakuan atau pengukuran yang berbeda, yaitu pengukuran sebelum dan sesudah dilakukan sebuah perlakuan. Selain itu untuk menguji efektifitas suatu perlakuan terhadap suatu besaran variabel yang ingin ditentukan, misalnya untuk mengetahui efektifitas metode penyuluhan terhadap peningkatan pengetahuan dari responden.( Ridwan, 2009)
Syarat – Syarat Penggunaan Uji T - Test Dependent
Syarat – syarat penggunaan uji t – test dependent, terdiri dari :
Uji komparasi antar dua nilai pengamatan berpasangan, misalnya: sebelum dan sesudah
Digunakan pada uji parametrik dimana syaratnya sebagai berikut:
satu sampel (setiap elemen mempunyai 2 nilai pengamatan)
merupakan data kuantitatif (rasio-interval)
Data berdistribusi normal (di populasi terdapat distribusi difference = d yang berdistribusi normal dengan mean μd=0 dan variance =1)
(Sugiyono, 2010)
Jenis Hipotesis pada Uji T - Test Dependent
Uji dua arah. Pada hipotesis awal tidak terdapat perbedaan yang signifikan antara rata-rata 1 dan rata-rata 2, sedangkan pada hipotesis alternatif sebaliknya yaitu terdapat perbedaan rata-rata 1 dan rata-rata 2.

Uji satu arah dimana pada hipotesis awal kelompok atau sampel 1 memiliki rata-rata sama dengan atau lebih besar dengan rata-rata kelompok 2. sedangakan hipotesis alternatif rata-rata kelompok 1 lebih kecil dibandingkan dengan rata-rata kelompok 2.

Uji satu arah ini kebalikan pada hipotesis kedua, dimana pada hipotesis awal kelompok atau sampel 1 memiliki rata-rata sama dengan atau lebih kecil dengan rata-rata kelompok 2. sedangakan hipotesis alternatif rata-rata kelompok 1 lebih besar dibandingkan dengan rata-rata kelompok 2.

Hipotesis awal ditolak, bila:|t hitung| > t tabel ( terdapat perbedaan / Ha)atau:Hipotesis awal diterima, bila:|t hitung| <= t tabel (tidak terdapat perbedaan / Ho)
Rumus
Menurut Sugiyono (2010), rumus uji t-test dependent, yaitu :
Statistik hitung (t hitung):

Dimana:

KeteranganD = Selisih x1 dan x2 (x1-x2)n = Jumlah SampelX bar = Rata-rataS d = Standar Deviasi dari d.
Langkah Menggunakan Uji T – Test Dependent
Menurut Ratih (2014), Langkah-langkah pengujian signifikansi (hipotesis) dalam Pengujian Perbedaan Rata‐rata Dua kelompok berpasangan:
Tetapkan H0 dan H1
Tetapkan titik kritis (tingkat kepercayaan 95 %) atau (tingkat kepercayaan 99 %) yang terdapat pada tabel "t".
Tentukan daerah kritis, dengan db = n -1.
Tentukan t hitung dengan menggunakan rumus.
Lakukan uji signifikansi dengan membandingkan besarnya " t" hitung dengan "t" tabel.
Contoh Kasus dalam Pengerjaan Pengujian Signifikansi (hipotesis)
Suatu kegiatan penelitian eksperimental, telah berhasil menemukan metode "ABG" sebagai metode baru untuk mengajarkan mata kuliah Statistika II. Dalam rangka uji coba terhadap efektifitas atau keampuhan metode baru itu, dilaksanakan penelitian lanjutan dengan mengajukan Hipotesis Nol (Nihil) yang mengatakan : Tidak terdapat perbedaan yang signifikan nilai Statistika II antara sebelum dan sesudah di terapkannya metode "ABG" sebagai metode mengajar mahasiswa UIB semester 6. Dalam rangka pengujian ini diambil sampel sebanyak 20 mahasiswa. Gunakan taraf kepercayaan 95 % (alfa=5% ) untuk menguji pernyataan (Hipotesis) tersebut.
Datanya Sebagai berikut:
Nama Nilai Statistika II
Sebelum Sesudah
A 78 75
B 60 68
C 55 59
D 70 71
E 57 63
F 49 54
G 68 66
H 70 74
I 81 89
J 30 33
K 55 51
L 40 50
M 63 68
N 85 83
O 70 77
P 62 69
Q 58 73
R 65 65
S 75 76
T 69 86
Langkah -langkah yang dilakukan:
Menentukan Hipotesis yang digunakan, yaitu:
Ho:Tidak terdapat perbedaan yang signifikan antara hasil belajar sebelum dan sesudahHa:Terdapat perbedaan yang signifikan hasil belajar sebelum dan sesudah
Menetapkan titik kritis yaitu alfa 5%
Menentukan daerah kritis, dengan db = n -1=20-1=19
Menentukan t hitung
Memulai dengan menghitung selisih D.

Menghitung Standar Deviasi:
Menghitung t hitung:

Melakukan uji signifikansi
Diketahui t tabel = 2,093. Sehingga |t hitung| > t tabel.
Sehingga dapat disimpulkan:
Ho ditolak , sehingga disimpulkan bahwa terdapat perbedaan yang signifikan antara hasil belajar statistika II sebelum dan sesudah diterapkannya Metode "ABG".
Sumber :Setiawan, 2013
Contoh Skripsi
Judul: Efek Pendidikan Gizi dengan Media Leaflet terhadap Peningkatan Pengetahuan tentang Serat Makanan (Dietary Fiber) pada Remaja di SMK Dwija Dharma Boyolali.
Oleh: Ika Dyah Pramita Sari
Variabel bebas: Pendidikan gizi
Variabel terikat: Pengetahuan remaja tentang serat makanan.
Variabel sebelum diberikan pendidikan gizi
Skala: Rasio
Alat Ukur: kuisioner, alat tulis
Cara ukur: wawancara
Variabel pengetahuan sesudah diberikan pendidikan gizi
Skala : Rasio
Alat ukur: kuisioner, alat tulis
Cara ukur: wawancara
Variabel pendidikan gizi
Skala: -
Alat ukur: leaflet
Cara ukur: ceramah
Hasil Uji Paired-Sanple T – Test
Variabel:Pengetahuan gizi sebelum dan sesudah diberi pendidikan gizi tentang serat.
thitung: - 14.73
pvalue: 0.05
| thitung | pvalue > (14.73 > 0.05). Maka Ho ditolak, sehingga terdapat perbedaan pengetahuan tentang serat makanan pada remaja sebelum dan sesudah diberikan pendidikan dengan media leaflet di SMK Dwija Dharma Boyolali.
Judul: Perbedaan Gizi dan Tingkat Kecukupan Energi Protein pada Pasien Gagal Ginjal Kronik Predialisis Sebelum dan Setelah Mendapatkan Konseling Gizi di RS. DR. Moewardi Surakarta.
Oleh: Dyah Widiyastuti.
Variabel bebas: Pemberian konsultasi gizi.
Variabel terikat: Pendidikan gizi, tingkat kecukupan energi, tingkat kecukupan protein.
Variabel: pendidikan gizi
Skala: Rasio
Cara ukur: wawancara
Alat ukur: kuisioner, alat tulis
Variabel: tingkat kecukupan energi
Skala: Rasio
Cara ukur: Recall
Alat ukur: nutrisurvey
Variabel: tingkat kecukupan protein
Skala: Rasio
Cara ukur: Recall
Alat ukur: nutrisurvey
Hasil Uji Paired-Sample T-Test
Variabel: Pendidikan gizi
thitung: - 12.455
Variabel: asupan energi
thitung: - 10.844
Variabel : asupan protein
thitung: - 7.478
Kesimpulan :
Dari ketiga variabel menunjukkan bahwa | thitung | > ttabel. Maka Ho ditolak, sehingga dapat disimpulkan bahwa terdapat perbedaan pengetahuan gizi dan tingkat kecukupan energi, protein pada pasien gagal ginjal kronik predialisis sebelum dan setelah mendapat konseling gizi di RS DR. Moerwardi, Surakarta
Perbedaan pengetahuan gizi pada pasien gagal ginjal kronik diperoleh nilai p = 0,001. Maka Ho ditolak , sehingga ada perbedaan pengetahuan gizi sebelum dan sesudah dilakukan konseling gizi.
Perbedaan tingkat kecukupan energi pada pasien gagal ginjal kronik diperoleh nilai p= 0,001 dan tingkat kecukupan protein diperoleh nilai p= 0,001. Maka Ho ditolak, sehingga ada perbedaan tingkat kecukupan energi dan protein sebelum dan setelah dilakukan konseling gizi.
Judul:Pengaruh Perendaman Daging Sapi pada Sari Buah Nanas dan Sari Buah Pepaya Terhadap Tekstur dan Warna Daging Sapi.
Oleh: Siska Mutiara Tri Arini
Variabel bebas: perendaman daging sapi pada sari buah nanas dan sari buah pepaya dengan konsentrasi yang berbeda
Variabel terikat: tekstur dan warna daging sapi
Pengujian tekstur daging sapi
Bahan : daging sapi yang sudah direndam sari nanas dan sari pepaya.
Alat: penetrometer, sendok makan, dan piring kecil.
Pengujian warna daging sapi
Bahan: daging sapi yang sudah direndam sari nanas dan sari pepaya.
Alat: Minolta Reflectance Charomameter (CR- 400), piring kecil, dan sendok makan.
Variabel kontrol: jenis bagian sapi, jenis buah nanas mentah, jenis buah pepaya dan ukuran irisan daging sapi.
Kesimpulan:
Perbedaan tekstur daging sapi dengan perendaman sari buah nanas dan pepaya (p=0,257 untuk konsentrasi 10 % dan p= 0,138 untuk konsentrasi 20 %). Maka Ho diterima, sehingga tidak ada perbedaan tekstur daging pada perendaman daging dengan sari buah nanas maupun sari buah pepaya.
Perbedaan warna daging sapi dengan perendaman sari buah nanas dan pepaya ( p= 0,226 pada konsentrasi 10 % dan p= 0,034 pada konsentrasi 20 %). Pada konsentrasi 10 % Ho diterima, sehingga tidak ada perbedaan warna daging terhadap nilai kecerahan. Sedangkan pada konsentrasi 20 % Ho ditolak , sehingga ada perbedaan warna daging terhadap nilai kecerahan.
DAFTAR PUSTAKA
Nasrul, Setiawan.2013. "Uji t Perbedaan Rata‐rata Dua kelompok berpasangan (dependent) parametrik" (online), (http://statistikceria.blogspot.com/2013/12/Pengujian-Perbedaan-Rata-rata-Dua-kelompok-berpasangan-dependent-parametrik.html, diakses tanggal 1 Desember 2014)
Ridwan. 2006. Dasar – Dasar Statistika. Bandung : Alfabeta
Ridwan. 2006. Statistika untuk Penelitian. Bandung : Alfabeta
Ridwan. 2009. Pengantar Statistika Sosial. Bandung : Alfabeta
Sugiyono. 2010. Statistika untuk Penelitian. Bandung : Alfabeta
Sugiyono. 2009. Statistika untuk Penelitian. Bandung : Alfabeta
LAMPIRAN


Download makalah t test dependent.docx

Download Now



Terimakasih telah membaca makalah t test dependent. Gunakan kotak pencarian untuk mencari artikel yang ingin anda cari.
Semoga bermanfaat


Tinggalkan Komentar
EmoticonEmoticon