November 22, 2016

Contoh soal Statistika


Judul: Contoh soal Statistika
Penulis: Michael Weisang


1. Soal: Dalam ulangan matematika, suatu kelas dibagi menjadi dua grup berdasarkan nilai rata-ratanya, yaitu:
grup 1: terdiri dari 21 siswa dengan nilai rata-rata 62
grup 2: terdiri dari 29 siswa dengan nilai rata-rata 68
Tentukan nilai rata-rata matematika kelas tersebut!
Penyelesaian:

 
Jadi, nilai rata-rata matematika kelas tersebut adalah 65,48.
 
2. Didalam suatu kelas terdapat 20 siswa laki-laki dan 10 siswa wanita. Rata-rata umur siswa laki-laki 14 tahun dan yang wanita 16 tahun. Rata-rata umur siswa di dalam kelas tersebut adalah ….
Penyelesaian:

Contoh soal statistikaTabel 1.1 dibawah ini:
 
Jawab :
 
Contoh soal sederhana:Berikut ini terdapat data nilai matematika siswa kls VII.A,andi 85audi 90dessy 75fany 68hariz 70joko 80sinta 75umaima 74zeckry 82Tentukan nilai mean, median, dan modus dari data tersebut.?Penyelesaian:urutkan data-data tersebut terlebih dahulu berdasarkan nilai dari terendah hingga teritnggi,687074757580828590diketahui jmlh anak (n)= 9 org, makajumlah nilai= 68+70+74+75+75+80+82+85+90= 699Mean= 699/9 = 77,667Jadi, nilai rata-rata siswa kls VII.A untuk pelajaran matematika = 77,667Median= nilai tengah dari kelompok data tersebut adalah nilai 75Modus= terdapat 2 nilai 75 dalam kelompok data, sehingga modus= 75
1. Seorang peneliti mencatat banyak bayi yang lahir selama setahun di 20 kecamatan. Hasil pencatatannya disajikan berikut.136 140 220193 130 158 242 127 184 213200 131 111 160 217 281 242 242 281 192a. Hitunglah rataan hitung (mean) data tersebut.b. Tentukan jangkauan datanya.c. Tentukanlah jangkauan antarkuartil.2. Nilai rataan hitung (rata-rata) ujian matematika dari 38 orang siswa adalah 51. Jika nilai dari seorang siswa lain yang bernama Rahman digabungkan dengan kelompok itu maka nilai rataan hitung ujian matematika dari 39 orang siswa sekarang menjadi 52. Tentukanlah nilai yang diperoleh Rahman.Jawab :

Contoh soal:

Tabel 1.11 menunjukkan hasil ulangan Fisika dari 71 siswa Kelas XI SMA Merdeka. Tentukanlah rataan hitung dengan menggunakan rataan hitung sementara.Jawab :

1. Tentukan modus dari data berikut ini.a. 45, 50, 50, 64, 69, 70, 70, 70, 75, 80b. 50, 65, 65, 66, 68, 73, 73, 90c. 35, 42, 48, 50, 52, 55, 60

2. Tabel menunjukkan hasil ulangan matematika dari 71 siswa Kelas XI SMA Bhinneka. Tentukan modus dari data tersebut.Jawab :

Tentukan median, kuartil bawah, dan kuartil atas dari databerikut.67 86 77 92 75 7063 79 89 72 83 7475 103 81 95 72 6366 78 88 87 85 6772 96 78 93 82 71Jawab :

Contoh soal:

Tentukan median, kuartil bawah, dan kuartil atas dari data pada Tabel di atas.Jawab :

[STATISTIKA] Penyajian Data Ukuran menjadi Data Statistik Deskriptif1 komentar Posted in Label: Matematikaundefinedundefined1. Rataan Hitung (Mean)Masih ingatkah Anda cara menghitung rataan hitung? Misalnya, seorang guru mencatat hasil ulangan 10 orang siswanya, sebagai berikut.6 5 5 7 7,5 8 6,5 5,5 6 9Dari data tersebut, ia dapat menentukan nilai rataan hitung, yaitu

Jadi, nilai rataan hitungnya adalah 6,55.Secara umum, apabila nilai data kuantitatif tidak dikelompokkan dan dinyatakan oleh x1, x2, …, xn (terdapat n buah datum), nilai rataan hitung (mean) x ditentukan oleh rumus berikut.

Perhitungan nilai rataan hitung akan menjadi lain jika guru tersebut mencatat hasil ulangan 40 orang siswanya sebagai berikut:3 orang mendapat nilai 44 orang mendapat nilai 56 orang mendapat nilai 5,58 orang mendapat nilai 67 orang mendapat nilai 710 orang mendapat nilai 82 orang mendapat nilai 9Nilai rataan hitung siswa dapat dicari sebagai berikut:

Jadi, nilai rataan hitungnya adalah 6,5.Secara umum, apabila nilai-nilai data kuantitatif dinyatakan dengan x1, x2, …, xn (terdapat n buah datum) dengan setiap nilai datum mempunyai frekuensi f 1 , f 2 , …, f n maka rataan hitung ( x ) ditentukan oleh rumus berikut.

Contoh soal:1. Seorang peneliti mencatat banyak bayi yang lahir selama setahun di 20 kecamatan. Hasil pencatatannya disajikan berikut.136 140 220193 130 158 242 127 184 213200 131 111 160 217 281 242 242 281 192a. Hitunglah rataan hitung (mean) data tersebut.b. Tentukan jangkauan datanya.c. Tentukanlah jangkauan antarkuartil.2. Nilai rataan hitung (rata-rata) ujian matematika dari 38 orang siswa adalah 51. Jika nilai dari seorang siswa lain yang bernama Rahman digabungkan dengan kelompok itu maka nilai rataan hitung ujian matematika dari 39 orang siswa sekarang menjadi 52. Tentukanlah nilai yang diperoleh Rahman.Jawab :

2. Menghitung Rataan Hitung dengan Menggunakan Rataan Hitung SementaraRataan hitung dapat pula ditentukan dengan menggunakan rataan hitung sementara (xs). Untuk kumpulan data berukuran besar, biasanya rataan hitung ditentukan dengan menggunakan rataan hitung.Langkah pertama dalam menentukan rataan hitung dengan menggunakan rataan hitung sementara adalah menentukan rataan sementara dari nilai tengah salah satu kelas interval. Kemudian, semua nilai tengah pada setiap kelas interval dikurangi rataan hitung sementara tersebut.Setiap hasil pengurangan tersebut disebut simpangan terhadap rataan hitung sementara itu (di). Adapun rumus untuk mencari rataan hitung sementara adalah sebagai berikut.

Contoh soal:

Tabel 1.11 menunjukkan hasil ulangan Fisika dari 71 siswa Kelas XI SMA Merdeka. Tentukanlah rataan hitung dengan menggunakan rataan hitung sementara.Jawab :

3. Modus, Median, Kuartil, dan Desila. Modus (Mo)Seorang guru ingin mengetahui nilai manakah yang paling banyak diperoleh siswanya dari data hasil ulangan matematika. Tentunya, ia akan menentukan datum yang paling sering muncul. Misalnya, data hasil ulangan 10 orang siswa sebagai berikut7 4 6 5 7 8 5,5 7 6 7Data yang paling sering muncul disebut modus. Modus dari data itu adalah 7 sebab nilai yang paling sering muncul adalah 7. Modus mungkin tidak ada atau jika ada modus tidak tunggal. Jika data yang diperoleh berukuran besar, data perlu dikelompokkan agar penentuan modus mudah dilakukan. Modus dari data yang dikelompokkan dapat dicari dengan menggunakan rumus berikut.

denganL = batas bawah nyata (tepi bawah) dari kelas modusd1 = selisih antara frekuensi dari kelas yang mengandung modus dan frekuensi dari kelas yang mendahuluinya (sebelumnya).d 2 = selisih antara frekuensi dari kelas yang mengandung modus dan frekuensi dari kelas berikutnyai = interval kelas/panjang kelas.Telah Anda ketahui modus adalah datum yang paling sering muncul. Prinsip ini digunakan untuk menentukan kelas modus pada data yang dikelompokkan. Kelas modus adalah kelas yang frekuensinya paling banyak.Contoh soal:1. Tentukan modus dari data berikut ini.a. 45, 50, 50, 64, 69, 70, 70, 70, 75, 80b. 50, 65, 65, 66, 68, 73, 73, 90c. 35, 42, 48, 50, 52, 55, 60

2. Tabel menunjukkan hasil ulangan matematika dari 71 siswa Kelas XI SMA Bhinneka. Tentukan modus dari data tersebut.Jawab :

b. Median dan KuartilDari data kuantitatif yang tidak dikelompokkan dan dinyatakan oleh x1, x2, …, xn, (dengan x1 < x2 < … < xn) untuk n yang berukuran besar (yang dimaksud n berukuran besar yaitu n = 30) maka nilai ketiga kuartil, yaitu Q1 (kuartil bawah),Q2(median), dan Q3 (kuartil atas) ditentukan dengan rumus berikut.

Contoh soal :Tentukan median, kuartil bawah, dan kuartil atas dari databerikut.67 86 77 92 75 7063 79 89 72 83 7475 103 81 95 72 6366 78 88 87 85 6772 96 78 93 82 71Jawab :

Untuk data yang dikelompokkan, nilai median (Me) dan kuartil (Q) ditentukan dengan rumus sebagai berikut.

Contoh soal:

Tentukan median, kuartil bawah, dan kuartil atas dari data pada Tabel di atas.Jawab :

c. DesilUntuk data sebanyak n dengan n ≥ 10, Anda dapat membagi data tersebut menjadi 10 kelompok yang memuat data sama banyak. Ukuran statistik yang membagi data (setelah diurutkan dari terkecil) menjadi 10 kelompok sama banyak disebut desil. Sebelum data dibagi oleh desil, data harus diurutkan dari yang terkecil.Oleh karena data dibagi menjadi 10 kelompok sama banyak maka didapat 9 desil. Amati pembagian berikut. 

Terdapat 9 buah desil, yaitu desil pertama(D1), desil kedua (D2), ..., desil kesembilan (D9).Letak desil ditentukan dengan rumus berikut.

Dalam hal ini i = 1, 2, 3, ..., 9 dan n = banyak data.Contoh soal:Tentukan desil ke-1 dan desil ke-5 dari data berikut.47, 33, 41, 37, 46, 43, 39, 36, 35, 42, 40, 39, 45Jawab :

Tentukan nilai desil ketiga dari data pada Tabel

Jawab :

Hitung simpangan rata-rata dari data kuantitatif berikut:12, 3, 11, 3, 4, 7, 5, 11Jawab :

Hitunglah simpangan rata-rata nilai ulangan Fisika dari siswa Kelas XI SMA Merdeka seperti Tabel

Jawab :

Dari 40 orang siswa diambil sampel 9 orang untuk diukur tinggi badannya, diperoleh data berikut:165, 170, 169, 168, 156, 160, 175, 162, 169.Hitunglah simpangan baku sampel dari data tersebut.Jawab :

Hitunglah simpangan baku dari nilai ulangan Fisika dari 71 siswa kelas XI SMA Merdeka sesuai Tabel

Jawab :

Hitunglah variansi dari dataDari 40 orang siswa diambil sampel 9 orang untuk diukur tinggi badannya, diperoleh data berikut:165, 170, 169, 168, 156, 160, 175, 162, 169.Jawab :Dari hasil perhitungan sebelumnya diperoleh S = 5,83 makav = S2 = (5,83)2 = 33,99.
Pak Murtono seorang pengusaha. Bidang usaha yang ia jalani adalah penerbitan, tekstil, dan angkutan. Dalam 5 bulan terakhir, ia mencatat keuntungan bersih ketiga bidang usahanya. Hasilnya tampak pada Tabel

Jika Pak Murtono berpendapat bahwa bidang usaha yang akan dipertahankan hanya dua bidang usaha dengan kriteria bidang usaha dengan keuntungan bersih yang stabil, tentukanlah bidang usaha yang sebaiknya tidak dilanjutkan.Jawab :


Download Contoh soal Statistika.docx

Download Now



Terimakasih telah membaca Contoh soal Statistika. Gunakan kotak pencarian untuk mencari artikel yang ingin anda cari.
Semoga bermanfaat


Tinggalkan Komentar
EmoticonEmoticon